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We study numerically the ordering process of two very simple dynamical models for a two-state variable on
several topologies with increasing levels of heterogeneity in the degree distribution. We find that the zero-
temperature Glauber dynamics for the Ising model may get trapped in sets of partially ordered metastable states
even for finite system size, and this becomes more probable as the size increases. Voter dynamics instead
always converges to full order on finite networks, even if this does not occur via coherent growth of domains.
The time needed for order to be reached diverges with the system size. In both cases the ordering process is
rather insensitive to the variation of the degreee distribution from sharply peaked to scale free.
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I. INTRODUCTION

Complex networks have become astonishingly popular in
recent years as models for the interaction patterns among
individuals sagents, computers, molecules, etc.d in many di-
verse fieldsf1g. The nontrivial topologies found in nature are
often the structures over which dynamical processes take
place. Complex interaction patterns produce in many cases
nontrivial collective dynamical properties, very different
from those observed when single elements are connected in a
regular way.

Social systems are one of the fields where it is more evi-
dent that regular lattices are often inappropriate as models
for the structure of interactions. This has led to intense ac-
tivity aimed at investigating the effect of complex networks
on the behavior of models for the spreading of opinionsf2g,
the diffusion of culturef3g and other processes where do-
mains of homogeneous individuals emerge out of an initial
disordered statef4–6g. These studies have often been moti-
vated by a direct interest in the social phenomena described
by the models considered. Here we take a different point of
view. We try to understand how the basic features of ordering
processes occurring on complex networks depend on the to-
pology and whether generic rules can be inferred.

For this reason we consider the simplest models that ex-
hibit an ordering dynamics: the voter model and the Glauber-
Metropolis zero-temperature dynamics for the Ising model.
They are not intended to describe any real phenomenon,

rather they allow the investigation of the role of simple
physical ingredientssas surface tension or interfacial noised,
and their interplay with the topological structure, in deter-
mining the overall behavior of the system.

For the same reason we consider extremely simple net-
works: the complete graph, the random graph and the scale-
free Barabasi-Albert graph. We believe that our investigation
provides the necessary background for a thorough under-
standing of more complicated and realistic dynamics on
more complex networks.

As a general pattern, we find that the two types of dynam-
ics behave rather differently on networks, while they are not
much sensitive to the precise topology on which they evolve.
For systems with a finite number of sitesN, Glauber zero-
temperature dynamics leads in some realizations to full or-
dering, while in others the system gets trapped in a set of
disordered metastable configurations. The probability of not
reaching order tends to grow withN. The voter dynamics
instead always reaches the fully ordered state when the sys-
tem size is finite. This however does not involve a coherent
ordering process as it happens on regular lattices: the system
remains on average disordered until a random fluctuation
leads it to consensus. The temporal scaletsNd needed for this
process diverges asNg. The detailed form of the topology
affects only the value ofg.

The paper is organized as follows. In the next section we
describe the models studied and we give a brief overview of
the background. Section III reports the results for voter dy-
namics, on the various networks considered. Glauber zero-
temperature dynamics is discussed in Sec. IV. The final sec-
tion contains a summary and a discussion of the results.

II. THE MODELS

In this paper we consider two of the simplest models that,
starting from a fully disordered initial state, exhibit an order-
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ing dynamics. In both cases a single variablesi, that may
assume only two valuess±1d, fully specifies the statesopin-
ion, cultured of site i.

In the zero-temperature Glauber dynamics for the Ising
model, at each time step a nodei selected randomly and the
local field is computed. Thensi is set equal to +1 if the local
field is positive and to −1 if it is negative. If the field is zero
the variable changes its valuef7g.

While the Glauber dynamics at finite temperature reaches
asymptotically the state dictated by thermodynamic equilib-
rium, which is well known also for some complex networks
f8g, the situation at zero temperature is much less under-
stood. On regular lattices it is known that, while ind=1 a
fully ordered state is always reached, in higher dimensions
the system may get stuck in a frozen state with coexisting
domains of opposite magnetization. Ind=2 this occurs with
probability of about 1/3 for large systems. In higher dimen-
sions the probability of reaching the ground state rapidly
vanishes as the system size grows and the system ends up
wandering forever within an isoenergy set of metastable
statesf9g. The Glauber zero-temperature dynamics has been
recently studied by Boyer and Miramontesf10g on the Watts-
Strogatz small-world networkf11g. They observe that order-
ing is hindered by the presence of shortcuts leading to a
pinned state with a finite size of ordered domains.

The other type of dynamics we consider is the voter
model: at each time step a nodesid and one of its neighbors
s jd are randomly selected. Thensi is set equal tosj. Also in
this case the behavior on regular lattices is well known
f12,13g: in dø2 order is reached asymptotically and the den-
sity of interfaces decays astsd−2d/2; for d.2 a stationary
active state is reached, with coexisting domains. Also this
model has been studied on the small-world network of Watts
and Strogatz finding that the dynamics gets stuck in a disor-
dered stationary state on infinitely large systems, while it
orders in finite systems over a time scaling asN f14g. Re-
cently, Wu and Hubermanf15g and Sucheckiet al. f16g have
considered the voter dynamics on networks with heteroge-
neous node degrees, showing that the average magnetization
is not conserved, at odds with what occurs on regular lat-
tices. During the completion of this work a paper by Sood
and Rednerf17g has appeared, reporting an analytical inves-
tigation of the ordering of the voter model on heterogeneous
networks. They compute the time to reach full consensus as
a function ofN for networks with generic degree distribu-
tion.

Glauber dynamics leads to the formation of ordered do-
mains and their coarsening as a consequence of the existence
of surface tension and the drive provided by energy minimi-
zation. In the voter dynamics instead no surface tension ex-
ists and the tendency toward order is the effect of annihila-
tion of freely diffusing interfaces between domainsf18g.

In the present paper the dynamical behavior of these mod-
els is studied on different types of topology. For random
graph we intend an Erdos-Renyi graph: a set ofN nodes such
that between each pair of them there is a connection with
probability p f19g. We have always checked that all nodes
considered formed a connected cluster. For relatively small
average degreekkl.1 and large system sizeN, while a giant
component exists, including the overwhelming majority of

nodes, isolated smaller clusters may appear. We have dis-
carded them and run the dynamics only on the giant compo-
nent of the network, always checking that at least 98% of the
N nodes belonged to it and that the average degree was very
close to its nominal valuekkl=psN−1d. To study the effect
of the scale-free topology we consider the most common
model known to produce such type of structure: the
Barabasi-Albert graphf20g.

To monitor the ordering dynamics, we focus on the den-
sity of active bondsnAstd, i.e., bonds connecting sites with
opposite values of the variablesi. For the Ising model it
coincides with the energy density. The initial condition is
always given by a completely disordered system, i.e., vari-
ables are chosen to be −1 or +1 at random in a completely
uncorrelated way. Results presented are always averaged
over a large number of realizations of both the topology and
the initial condition.

III. VOTER MODEL

A. Complete graph

We start by considering a random graph in the limitp
=1, i.e., a complete graph. In such a limit the graph is fully
connected and the state of the whole system is fully specified
by only one variable, the magnetizationm=ksil.

On such a graph, as well as on a regular lattice, the voter
model coincides with the so-called “Ochrombel simplifica-
tion of the Sznajd model,” for which exact results have been
derived by Slanina and Lavickaf21g. Writing down the mas-
ter equation for the probability densityPsm ,Nad of having
magnetizationm after Na attempted updates and passing to
the continuum limit one obtains

]Psm,t8d
]t8

=
]2

]m2fs1 − m2dPsm,t8dg, s1d

where the natural scaling of time with the number of sitesN,
t8=Na/N2, has been introduced.

Equations1d is a one-dimensional diffusion equation with
a variable diffusion coefficient. It is solved by standard meth-
ods for the Fokker-Planck equationf21g, finding that, for
larget8, the fraction of bonds connecting nodes with opposite
values of the variablesactive bondsd is

nAst8d =
s1 − m0

2d
2

e−2t8, s2d

wherem0 is the initial magnetization.
In the following we will measure time as the number of

attempted updates per nodet=Na/N, according to the idea
that each individual tries to modify its state once per unit
time. In this way the voter dynamics on a complete graph has
a characteristic timetsNd=N/2.

These results are exact only in the limitN→`. As dis-
cussed in Ref.f21g, for finite N diffusive terms proportional
to 1/N appear in the expansion of the master equation. Nev-
ertheless, numerical simulationssFig. 1d show that Eq.s2d
perfectly describes the evolution of the system starting from
relatively small values ofN.
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In order to gain further insight, let us separately consider
the survival probabilityrstd, i.e., the probability that a run
has not reached the fully ordered state up to timet andnA

Sstd,
the fraction of active bondsaveraged only over surviving
runs. Clearly the equalitynAstd=rstdnA

Sstd holds.
The survival probability is evaluated in Ref.f21g and it

reads, form0=0,

rstd = H1 t ! tsNd,
3
2e−t/tsNd t @ tsNd.

J s3d

The quantitynA
Sstd is easily computed and turns out to be

nA
Sstd =H 1

2e−t/tsNd t ! tsNd,
1
3 t @ tsNd.

J s4d

We realize then that the fully ordered state is not reached
in the thermodynamic limit. This occurs for two reasons. The
first is that the temporal scaletsNd over which consensus is
reached in finite systemsdivergeswith the sizeN. This hap-
pens also on regular lattices and is already evident from the
behavior ofnAstd. The second reason, specific to graphs, is
that even fort@tsNd the fraction of active bonds in surviv-
ing runsnA

Sstd does not go to zero whenN grows. This means
that surviving runs do not order; they rather stay in configu-
rations with, on average, a finitesand larged fraction of active
bonds. Random fluctuations bring eventually all surviving
runs to the fully ordered absorbing state; however, as long as
the runs survive they do not order on average. The decay of
nAstd is just a consequence of the decay ofrstd, the number
of such surviving runs.

This is completely different from what occurs on regular
lattices. In such a caserstd remains 1 up to a long time, after
which it quickly goes to zero. The decay ofnAstd mirrors the
decay ofnA

Sstd: all runs survive for approximately the same
time and they all get more and more ordered. An example of
such fully ordering behavior is provided by Glauber dynam-
ics on the complete graphssee below, Fig. 7d.

B. Random graph

Let us now consider what occurs for fixedN and changing
p, that is, the average degreekkl=psN−1d<pN of nodes

sFig. 2d. We find a remarkable similarity of the temporal
evolution with the case of the complete graph, even when the
average degree is changed by a factor larger than 100. Only
the prefactor weakly depends onkkl. The characteristic time
scaletsNd is proportional toN, as found in Ref.f17g, and
independent from the average degreekkl.

Figure 3 reports the value ofnA
S andrstd as a function of

t /N for several values ofN and p, with constant average
degreekkl=10. The behavior is very similar to what happens
on a complete graph and can be summarized as follows

rstd = H1 t ! tsNd,
3
2e−t/tsNd t @ tsNd,

J s5d

nA
Sstd = H 3

2Askklde−t/tsNd t ! tsNd,

Askkld t @ tsNd,
J s6d

so thatrstd= 3
2Askklde−t/tsNd for all times. The prefactorAskkld

is equal to 1/3 for the fully connected graph, while it is
smaller for finitekkl. We can conclude that, on random as on
complete graphs, surviving runs do not get ordered.

FIG. 1. Fraction of active bonds for voter dynamics on a com-
plete graph.

FIG. 2. Fraction of active bonds for voter dynamics on a random
graph, withN=1000.

FIG. 3. Fraction of active bonds in surviving runsnA
Sstd sfilled

symbolsd and survival probabilityrstd sempty symbolsd for voter
dynamics on a random graph forkkl=10.
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C. Barabasi-Albert graph

We consider then the voter model evolving on a scale-free
graph built according to the rules of Barabasi and Albert
sBAd f20g. These graphs are constructed by considering an
initial fully connected core ofm+1 nodes and iteratively
adding new nodes, each withm bonds. The other node to
which a new bond is linked is chosen among existing nodes
with probability proportional to their degreespreferential at-
tachmentd.

Also on the BA networks the fraction of active bonds
nAstd as a function of time decays, form.1, exponentially
fast to zero. The survival probabilityrstd and the fraction of
active bonds restricted to surviving runsnA

Sstd sFig. 4d follow
Eqs. s3d and s4d, i.e., on finite systems the model always
reaches the perfectly ordered state, but surviving runs do not
order. The only difference is the scaling of time with the
numberN of nodes, which is reported in Fig. 5. A power-law
fit yields, independently fromm.1, tsNd,Ng, with g
=0.880±0.003. The nontrivial scaling oftsNd with N had
already been observed by Sucheckiet al. f16g, which esti-
matedg by fitting tsNd over a decade. Here we find a com-
patible value over more than 3 decades. In Ref.f17g, Sood

and Redner estimate analyticallytsNd=N/ logsNd for this
case. In Fig. 5, we compare this expression to numerical
data, finding a good agreement, but no sign of the increase of
the effective exponent, which would be the signature of the
logarithmic correction.

Also for m=1 consensus is reached on finite systems, but
much more slowly: the decay ofnA

Sstd is not exponential; it is
power law or, possibly, even slower since the exponent is
close to 1/3 on the accessible temporal scales but it seems to
be decreasing with timesFig. 6d. Furthermore, the plateau of
nA

Sstd weakly depends onN. This is probably a preasymptotic
effect. The survival probabilityrstd sFig. 6, insetd decays
exponentially over a temporal scaletsNd,Ng with g
=1.04±0.01. The differences with respect to the casem.1
are a consequence of the treelike structure of the BA network
for m=1.

In order to investigate the universality of the exponentg
we finally study the ordering dynamics of the voter model on
a network built according to the prescriptions of Ref.f22g.
This graph is grown by iteratively adding nodes. Each of
them is connected to the nodes linked bym randomly chosen
edges. In this way a preferential attachment mechanism is
implemented so that this network has topological properties
practically identical to the one by Barabasi-Albert, with the
notable exception of a large clustering coefficientf23g. This
variation has little impact on the ordering dynamics. Form
.1, the phenomenology is exactly the same as the BA
graph, with the sole difference thatg=0.978±0.005.

In summary we find that the voter dynamics on the scale-
free networks withm.1 shows a remarkable similarity with
the dynamics on random and complete graphs. The nontrivial
topology of the BA graph is reflected only in the scaling of
the characteristic time with the number of sites, which fol-
lows a different power law.

IV. GLAUBER T=0 DYNAMICS

A. Complete graph

On the complete graph, also Glauber dynamics can be
solved analytically in the limitN→`. The master equation

FIG. 4. Fraction of active bonds in surviving runsnA
Sstd sfilled

symbolsd and survival probabilityrstd sempty symbolsd for voter
dynamics on a Barabasi-Albert graph form=3.

FIG. 5. Scaling of the timetsNd vs N on Barabasi-Albert graphs
for several values ofm, with a pure power-law fit withg=0.880
sthick lined and the formulaN/ logsNd sthin lined.

FIG. 6. Fraction of active bonds in surviving runsnA
Sstd smaind

and survival probabilityrstd sinsetd for voter dynamics on a
Barabasi-Albert graph withm=1.
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for the probabilityPsq,td of having a fractionq of positive
spins at timet, is, in the continuum limit, forq.1/2,

]Psq,td
]t

= −
]

]q
fs1 − qdPsq,tdg, s7d

where the natural definition of time ist=Na/N.
The ansatzPsq,td=Fsq,td / s1−qd leads to the expression

Psq,td =
1

s1 − qd
FF e−t

s1 − qdG . s8d

Hence the form ofP remains, during the temporal evolution,
equal to the initial condition. If the initial condition is a
d-function in q=q0, then Psq,td=dsq−kqld where kql=1
−s1−q0de−t.

The fraction of active bonds is then

nAstd = 2kqls1 − kqld = 2f1 − s1 − q0de−tgs1 − q0de−t. s9d

The comparison with numerical simulations shows perfect
agreement already forN of the order of 50. The exponential
decay ofnAstd is perfectly similar to what happens for the
voter model on a complete graph. But if we consider sepa-
rately the fraction of active bonds in surviving runsnA

Sstd and
the survival probabilityrstd sFig. 7d we find a picture quite
different from the case of voter dynamicsfEqs.s3d ands4dg.
The fraction of active bonds for surviving run decays expo-
nentially and then reaches a plateau, but the height of the
plateau depends onN and goes to zero asN→`. This is
analogous to what occurs on regular lattices and it means
that the Glauber dynamics is effective at ordering the Ising
model on a complete graph.

B. Random graph

Let us now consider what occurs for fixedN and changing
p. The first change is exhibited by the survival probability in
Fig. 8. While for largekkl the decay is exponential, for
smaller values ofkkl a plateau appears, indicating that not all
realizations of the dynamics end up in an ordered state, i.e.,
with all nodes sharing the same value of the variablesi. In

such runs the system remains trapped forever in configura-
tions with part of the nodes withsi =−1 and the rest withsi
=1.

A freezing in a disordered state for Glauber dynamics on
a random graph had already been noticed by Svensonf24g
and considered analytically by Häggströmf25g, who showed
that, in the limitN→`, the dynamics fails to reach the glo-
bal energy minimumsordered stated for any kkl.0. What is
the origin of this behavior?

This phenomenon is not related to special realizations of
the random graph topology. If we fix the topology and let the
dynamics evolve many times on it, we see that in the same
finite fraction of runs the system reaches a disordered state,
independently from the particular realization of the topology.

One could think that, given the low value ofp, there may
be small “communities” in the graph, i.e., groups of nodes,
tightly bound with each other with only few connections
with the rest of the system. Such communities could become
ordered and be basically decoupled from the rest of the sys-
tem, leading to a frozen disordered state essentially made by
a huge ordered set and few small chunks ordered in the op-
posite way. While this may be true for smallkkl and largeN,
here the explanation is different. The total magnetization
fs1/Ndoisig in the disordered state is always very close to
zero and the number of domains present is always equal to 2.
Moreover the larget limit of the fraction of active bonds in
surviving runsnA

Sstd indicates that a very high fraction of the
bonds connects sites with different values ofsi sFig. 9d.
Hence we can conclude that the system remains trapped in
configurations with two highly intertwined domains of
roughly the same size. The asymptotic value ofnAstd is much
higher than the lower bound computed in Ref.f25g,
kkle−6kkl /256.

In order to characterize further the dynamics we report in
Fig. 10 the average degree of nodes that flip at timet for
some values ofp andN. It turns out that the disordered state
is not frozen. It is instead a stationary active state, with some
spins flipping, while keeping the energy conserved. The
qualitative picture is then the same holding on regular lat-
tices for d.2: the system wanders forever in an isoenergy
set of states.

FIG. 7. Fraction of active bonds in surviving runsnA
Sstd sfilled

symbolsd and survival probabilityrstd sempty symbolsd for Glauber
t=0 dynamics on a complete graph.

FIG. 8. Survival probability for GlauberT=0 dynamics on a
random graph withN=1000 for different values of the average
degreekkl of nodes.
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It is finally interesting to consider the probabilitypdis that
this stationary disordered state occurs, i.e., the limit ofrstd
for t→`. As shown in Fig. 11, this probability has a non-
trivial behavior as a function ofN for fixed kkl: for very
small and largeN it grows, while it has an intermediate re-
gime such that it decreases as the system is made bigger.
Although Ref. f25g guarantees thatpdis goes to 1 asN di-
verges, for reasonable values ofN the values ofpdis are much
smaller than one.

We have no clear understanding of the reason for the non-
monotonic behavior. It is probably related in some way to the
connectivity transition that occurs in random graphs forp
=p1= lnsNd /N f19g. For p.p1 all nodes belongsin the limit
N→`d to the giant component, while forp,p1 separate
components exist. If we invert this relation we obtain an
expression for the value ofN where the connectivity transi-
tion occurs in terms ofkkl :Nm=ekkl. Then for N,Nmskkld
only the giant component exists, while forN.Nmskkld some
nodes belong to disconnected clusters. It is tempting to asso-
ciate Nmskkld with the value ofN such thatpdis is minimal.
The data presented in Fig. 11 are compatible with this pic-
ture, though we do not have a valid explanation why the
decrease ofpdis would correspond to the case where only the
giant component exists.

C. Barabasi-Albert graph

On Barabasi-Albert networks, the global behavior of
GlauberT=0 dynamics is similar to the one exhibited on
random graphs: in a fraction of the runs the system reaches a
disordered stationary state with two domains of opposite
magnetization: spins continue to flip but the energy does not
decrease further.

In Fig. 12 we report the fraction of such runs as a function
of the number of nodesN, for several values of the average
degreekkl=2m, wherem is the number of edges added for
each new node. In analogy with the case of the random
graph, the probability of remaining disordered grows for
large values ofN except for the casekkl=12, where a de-
crease is seen. This is similar to what happens on a random
graph for large average degree. Forkkl=2 the probability
rapidly reaches the value 1, i.e., no run reaches full order.
This can be easily understood given the treelike structure of
the Barabasi-Albert graph form=1.

V. CONCLUSIONS

In summary, we have investigated the behavior of the
simplest ordering dynamics for a two-valued variable on net-
works ranging from the fully connected graph to random and

FIG. 11. Probability of ending in the disordered state as a func-
tion of N for several values ofkkl.

FIG. 12. Probability that dynamics reaches a disordered state on
the Barabasi-Albert graph as a function ofN for the zero-
temperature Glauber dynamics.

FIG. 9. Value of the fraction of active bonds in surviving runs
nA

Sstd as a function oft for several values ofN and kkl=7.

FIG. 10. Average degree of spins that flip at timet for several
values ofkkl andN.
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scale-free graphs. In general we find that the difference be-
tween the zero-temperature Glauber-Metropolis Ising dy-
namics and the voter model has a quite strong impact on the
ordering process starting from a completely random initial
condition. On the other hand, the presence or absence of a
typical scale in the network describing the interaction pattern
has a limited effect: it changessin the voter modeld the tem-
poral scale over which order is reached, but does not affect
whether or not such order is reached.

The voter model dynamics invariably leads to full order-
ing, for any type of topology, provided the numberN of
nodes in the system is finite. WhenN grows the time needed
to reach complete consensus diverges, in a way that depends
on the connectivity pattern. If one considers the number of
active bondsnAstd as a function of time averaged over all
realizations of the dynamics, including those that already
have reached the fully ordered state, one sees an exponential
decay. This may lead to the conclusion that the system actu-
ally orders exponentially fastsi.e., faster than on regular lat-
ticesd. However, this conclusion disagrees with the connec-
tion between the voter dynamics and the recurrence
properties of random walks. The recurrence of the random
walk on regular lattices fordø2 implies that the voter model
orders on them, while it remains in a disordered state when
the walk is transientsd.2d. The same argument implies that
the voter model does not order on networks, as those consid-
ered here, for which the random walk is transientf26g. The
solution of this apparent paradox is that the voter model
actually does not get ordered on networks in the thermody-
namical limit. The right quantity to observe this is the den-
sity of active bonds in surviving runsnA

Sstd, which does not
decay to zero; it attains large values, signaling that in surviv-
ing runs the system is again split in two domains with a large
number of interconnections. Notice that this is true also for
the complete graph.

For Glauber dynamics on a complete graph full ordering
is attained for any system size, including the thermodynamic
limit. Randomness in the connectivity pattern implies instead
that even a finite system has a nonzero probability to remain
trapped in metastable states, i.e., to indefinitely cycle through
configurations with the same energy. In such metastable con-
figurations, the system is split in two domains with a large
number of interconnections. When the system size grows the

probability of reaching this disordered stationary state tends
to increase, making full ordering less likely. Apart from de-
tails, this holds true for both randomsErdös-Renyid and
scale-freesBarabasi-Albertd graphs.

We are now in the position to summarize the common
features and the differences between the behavior of the
voter model and the Glauber zero-temperature dynamics. At
the level of the complete graph, despite the apparent similar-
ity between Eq.s2d and Eq.s9d, the two models are different,
since Glauber reaches genuine order in the thermodynamic
limit, while voter does not. In the presence of a random
topology, the similarity is stronger: In both cases, the system
initially approaches a state with two intertwined domains of
roughly the same size. For the voter model, the large noise
present in the dynamics creates fluctuations that eventually
lead, in finite systems, to complete ordering. In the Glauber
case, instead, the zero-temperature condition forbids energy
fluctuations and the dynamics remains confined to isoener-
getic partially ordered configurations.

The two dynamical models considered are not dramati-
cally sensitive to the underlying topology. The existence or
absence of a characteristic scale in the degree distribution of
the network does not affect whether order is reached or not.
For the voter dynamics, the degree distribution only affects
the way the characteristic temporal scalet depends onN. We
have shown that for over three decades the exponentg
=0.880±003 fits very well the numerical data, but this does
not rule out the analytical predictiont,N/ log N of Ref.
f17g. However, the results for the scale-free graph by Dor-
ogovtsev, Mendes and Samukhin seem to indicate that the
precise value ofg may depend on other details of the under-
lying network.
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