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Comparison of voter and Glauber ordering dynamics on networks
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We study numerically the ordering process of two very simple dynamical models for a two-state variable on
several topologies with increasing levels of heterogeneity in the degree distribution. We find that the zero-
temperature Glauber dynamics for the Ising model may get trapped in sets of partially ordered metastable states
even for finite system size, and this becomes more probable as the size increases. Voter dynamics instead
always converges to full order on finite networks, even if this does not occur via coherent growth of domains.
The time needed for order to be reached diverges with the system size. In both cases the ordering process is
rather insensitive to the variation of the degreee distribution from sharply peaked to scale free.
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[. INTRODUCTION rather they allow the investigation of the role of simple
physical ingredientgas surface tension or interfacial noise

Complex networks have become astonishingly popular irand their interplay with the topological structure, in deter-
recent years as models for the interaction patterns amongining the overall behavior of the system.
individuals (agents, computers, molecules, gto. many di- For the same reason we consider extremely simple net-
verse fleldil] The nontrivial tOpOlogies found in nature are works: the Comp|ete graph, the random graph and the scale-
often the structures over which dynamical processes takgee Barabasi-Albert graph. We believe that our investigation
place. Complex interaction patterns produce in many cassrovides the necessary background for a thorough under-
nontrivial collective dynamical properties, very different standing of more complicated and realistic dynamics on
from those observed when single elements are connected inpgore complex networks.
regular way. As a general pattern, we find that the two types of dynam-

Social systems are one of the fields where it is more eviics behave rather differently on networks, while they are not
dent that regular lattices are often inappropriate as modelgych sensitive to the precise topology on which they evolve.
for the structure of interactions. This has led to intense acgor systems with a finite number of sités Glauber zero-
tivity aimed at investigating the effect of complex networks temperature dynamics leads in some realizations to full or-
on the behavior of models for the spreading of opinifls  dering, while in others the system gets trapped in a set of
the diffusion of culture[3] and other processes where do- gisordered metastable configurations. The probability of not
mains of homogeneous individuals emerge out of an initiapeaching order tends to grow witN. The voter dynamics
disordered statf4—6]. These studies have often been moti-instead always reaches the fully ordered state when the sys-
vated by a direct interest in the social phenomena describe@m size is finite. This however does not involve a coherent
by the models considered. Here we take a different point ofrdering process as it happens on regular lattices: the system
view. We try to understand how the basic features of orderingemains on average disordered until a random fluctuation
processes occurring on complex networks depend on the tgeads it to consensus. The temporal seéhé) needed for this

pology and whether generic rules can be inferred. process diverges a¥”. The detailed form of the topology
For this reason we consider the simplest models that exaffects only the value of.

hibit an ordering dynamics: the voter model and the Glauber- The paper is organized as follows. In the next section we
Metropolis zero-temperature dynamics for the Ising modelgescripe the models studied and we give a brief overview of
They are not intended to describe any real phenomenoRne packground. Section Il reports the results for voter dy-
namics, on the various networks considered. Glauber zero-
temperature dynamics is discussed in Sec. IV. The final sec-
*Electronic address: castella@pil.phys.uniromal.it tion contains a summary and a discussion of the results.
"Electronic address: loreto@romal.infn.it
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SElectronic address: f.cecconi@istc.cnr.it In this paper we consider two of the simplest models that,
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ing dynamics. In both cases a single variaBlethat may nodes, isolated smaller clusters may appear. We have dis-
assume only two value&1l), fully specifies the statéopin-  carded them and run the dynamics only on the giant compo-
ion, culturg of sitei. nent of the network, always checking that at least 98% of the

In the zero-temperature Gl'auber dynamics for the IsingN nodes belonged to it and that the average degree was very
model, at each time step a nodselected randomly and the close to its nominal valuék)=p(N-1). To study the effect
local field is computed. Thes is set equal to +1 if the local of the scale-free topology we consider the most common
field is positive and to -1 if it is negative. If the field is zero qdel known to produce such type of structure: the
the variable changes its val(ié]. Barabasi-Albert grapf20].

Wh||te che”Glfr‘]Ube{ cilynda_m:l(;s dai)f'n;:]e temgeratur_e reaqlhbes To monitor the ordering dynamics, we focus on the den-
asymptotically the state dictated by thermodynamic equiib=g. o active bonds,(t), i.e., bonds connecting sites with
rium, which is well known also for some complex networks . . . .

Qpposite values of the variabk. For the Ising model it

8], the situation at zero temperature is much less under="+"= . ) e .
L8] P coincides with the energy density. The initial condition is

stood. On regular lattices it is known that, whiled1 a ! ) : :
fully ordered state is always reached, in higher dimension&/Ways given by a completely disordered system, i.e., vari-

the system may get stuck in a frozen state with coexistingP!es are chosen to be —1 or +1 at random in a completely
domains of opposite magnetization. ds 2 this occurs with ~ uncorrelated way. Results presented are always averaged
probability of about 1/3 for large systems. In higher dimen-0OVver a large number of realizations of both the topology and
sions the probability of reaching the ground state rapidlythe initial condition.
vanishes as the system size grows and the system ends up
wandering forever within an isoenergy set of metastable
stateq9]. The Glauber zero-temperature dynamics has been . VOTER MODEL
recently studied by Boyer and Miramon{d€] on the Watts-
Strogatz small-world networkl1]. They observe that order-
ing is hindered by the presence of shortcuts leading to a We start by considering a random graph in the lipit
pinned state with a finite size of ordered domains. =1, i.e., a complete graph. In such a limit the graph is fully

The other type of dynamics we consider is the voterconnected and the state of the whole system is fully specified
model: at each time step a notl¢ and one of its neighbors by only one variable, the magnetizatipre(s).
(j) are randomly selected. Thenis set equal te;. Also in On such a graph, as well as on a regular lattice, the voter
this case the behavior on regular lattices is well knownmodel coincides with the so-called “Ochrombel simplifica-
[12,13: in d<2 order is reached asymptotically and the den-tion of the Sznajd model,” for which exact results have been
sity of interfaces decays a&2/2: for d>2 a stationary derived by Slanina and LavicK&1]. Writing down the mas-
active state is reached, with coexisting domains. Also thiger equation for the probability densify(w,N,) of having
model has been studied on the small-world network of Wattsnagnetizationu after N, attempted updates and passing to
and Strogatz finding that the dynamics gets stuck in a disorthe continuum limit one obtains
dered stationary state on infinitely large systems, while it ,
orders in finite systems over a time scalingh$14]. Re- P(p,t') - i[(l — 1P t)] (1)
cently, Wu and Hubermali5] and Sucheckét al.[16] have at’ Iu? o
considered the voter dynamics on networks with heter.Oge."\ivhere the natural scaling of time with the number of sites
neous node degrees, showing that the average magnetlzatl{:)n: 2 :
is not conserved, at odds with what occurs on regular lat- Na/N.’ has been mtro_duced_. e . .

' Equation(1) is a one-dimensional diffusion equation with

tices. During the completion of this \_/vork a paper by.SOOda variable diffusion coefficient. It is solved by standard meth-
and Rednef17] has appeared, reporting an analytical inves-

tigation of the ordering of the voter model on heterogeneouOds for the Fokker-Planck equatig@1], finding that, for
X ?arget’, the fraction of bonds connecting nodes with opposite

networks. They compute the time to reach full consensus aSalues of the variabléactive bondsis
a function of N for networks with generic degree distribu-
tion. (1-mf)

Glauber dynamics leads to the formation of ordered do- na(t’) = Te ' 2
mains and their coarsening as a consequence of the existence
of surface tension and the drive provided by energy minimi-wheremy is the initial magnetization.
zation. In the voter dynamics instead no surface tension ex- In the following we will measure time as the number of
ists and the tendency toward order is the effect of annihilaattempted updates per notieN,/N, according to the idea
tion of freely diffusing interfaces between doma[is]. that each individual tries to modify its state once per unit

In the present paper the dynamical behavior of these modime. In this way the voter dynamics on a complete graph has
els is studied on different types of topology. For randoma characteristic time{N)=N/2.
graph we intend an Erdos-Renyi graph: a sail@fodes such These results are exact only in the linNt— . As dis-
that between each pair of them there is a connection witltussed in Ref{21], for finite N diffusive terms proportional
probability p [19]. We have always checked that all nodesto 1/N appear in the expansion of the master equation. Nev-
considered formed a connected cluster. For relatively smatrtheless, numerical simulatioriBig. 1) show that Eq.(2)
average degregk)>1 and large system si2¢, while a giant  perfectly describes the evolution of the system starting from
component exists, including the overwhelming majority ofrelatively small values oN.

A. Complete graph
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FIG. 1. Fraction of active bonds for voter dynamics on a com-  FIG. 2. Fraction of active bonds for voter dynamics on a random
plete graph. graph, withN=1000.

In order to gain further insight, let us separately considefFig. 2. We find a remarkable similarity of the temporal
the survival probabilityp(t), i.e., the probability that a run evolution with the case of the complete graph, even when the
has not reached the fully ordered state up to tiraedn3(t), ~ average degree is changed by a factor larger than 100. Only
the fraction of active bondsveraged only over surviving the prefactor weakly depends ¢k). The characteristic time

runs Clearly the equality]A(t):p(t)ni(t) holds. .SCEl|eT(N) is proportional toN, as found in Ref[17], and
The survival probability is evaluated in RR1] and it ~ independent from the average degtke
reads, formy=0, Figure 3 reports the value mﬁ andp(t) as a function of
1 t< o(N) t/N for several values ofN and p, with constant average
P =13 _un ' (3)  degreelk)=10. The behavior is very similar to what happens
2€ ™ t> A(N). on a complete graph and can be summarized as follows
The quantityni(t) is easily computed and turns out to be L AN)
< ,
1 -ti(N) _
e t< 7(N), p(t) —{ - (5)
S =13 (4) 2 1= AN,
3 t> 7(N).
We realize then that the fully ordered state is not reached 3 ~t/m(N)
. O . s SA(KY) e t< 7(N),
in the thermodynamic limit. This occurs for two reasons. The na(t) = (6)
first is that the temporal scal€N) over which consensus is AK) t>7(N),

reached in finite systendivergeswith the sizeN. This hap-

pens also on regular lattices and is already evident from thgo thatp(t) = 3A((k))e/"™ for all times. The prefactoh((k))
behavior ofn,(t). The second reason, specific to graphs, isis equal to 1/3 for the fully connected graph, while it is
that even fort> 7(N) the fraction of active bonds in surviv- smaller for finite(k). We can conclude that, on random as on
ing runsnf{(t) does not go to zero whed grows. This means complete graphs, surviving runs do not get ordered.

that surviving runs do not order; they rather stay in configu-

rations with, on average, a finitand large fraction of active 1_..;...,%%1 L
bonds. Random fluctuations bring eventually all surviving L N
runs to the fully ordered absorbing state; however, as long as “en o N=10000

the runs survive they do not order on average. The decay of I ® o,

na(t) is just a consequence of the decayp@f), the number
of such surviving runs.

This is completely different from what occurs on regular
lattices. In such a cag#t) remains 1 up to a long time, after .
which it quickly goes to zero. The decay wf(t) mirrors the %o
decay ofni(t): all runs survive for approximately the same

P, n,°
]

-
."l‘I\.O..O,.O..o..o -®

time and they all get more and more ordered. An example of o0 ene
such fully ordering behavior is provided by Glauber dynam- gosl— 1 0,
ics on the complete graplsee below, Fig. )7 6 oL 02 03 04 05 06

t/N

B. Random graph FIG. 3. Fraction of active bonds in surviving runﬁ(t) (filled

Let us now consider what occurs for fixddand changing symbolg and survival probabilityp(t) (empty symbols for voter
p, that is, the average degrék)=p(N-1)~pN of nodes dynamics on a random graph f¢)=10.
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FIG. 4. Fraction of active bonds in surviving run§(t) (filled
symbolg and survival probabilityp(t) (empty symbols for voter
dynamics on a Barabasi-Albert graph for=3.

C. Barabasi-Albert graph

We consider then the voter model evolving on a scale-fre
graph built according to the rules of Barabasi and Alber

(BA) [20]. These graphs are constructed by considering al

initial fully connected core ofm+1 nodes and iteratively
adding new nodes, each with bonds. The other node to

which a new bond is linked is chosen among existing node

with probability proportional to their degrdereferential at-
tachmenk

Also on the BA networks the fraction of active bonds
na(t) as a function of time decays, fon>1, exponentially
fast to zero. The survival probabilify(t) and the fraction of
active bonds restricted to surviving run%(t) (Fig. 4) follow
Egs. (3) and (4), i.e., on finite systems the model always
reaches the perfectly ordered state, but surviving runs do n
order. The only difference is the scaling of time with the
numberN of nodes, which is reported in Fig. 5. A power-law
fit yields, independently fromm>1, #(N)~N?, with y
=0.880+0.003. The nontrivial scaling afN) with N had
already been observed by Sucheekial. [16], which esti-
matedy by fitting #(N) over a decade. Here we find a com-
patible value over more than 3 decades. In R&Y], Sood

)
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FIG. 5. Scaling of the time{(N) vs N on Barabasi-Albert graphs
for several values of, with a pure power-law fit withy=0.880
(thick line) and the formulaN/log(N) (thin line).
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FIG. 6. Fraction of active bonds in surviving run§(t) (main)
and survival probabilityp(t) (inse) for voter dynamics on a
Barabasi-Albert graph witim=1.

and Redner estimate analyticallsN)=N/log(N) for this

case. In Fig. 5, we compare this expression to numerical
data, finding a good agreement, but no sign of the increase of
the effective exponent, which would be the signature of the

?ogarithmic correction.

Also for m=1 consensus is reached on finite systems, but
much more slowly: the decay oﬁ(t) is not exponential; it is
power law or, possibly, even slower since the exponent is
close to 1/3 on the accessible temporal scales but it seems to
be decreasing with timéFig. 6). Furthermore, the plateau of
nﬁ(t) weakly depends oN. This is probably a preasymptotic
effect. The survival probability(t) (Fig. 6, inset decays
exponentially over a temporal scalgN)~NY with vy
=1.04+0.01. The differences with respect to the aasel

e a consequence of the treelike structure of the BA network
or m=1.

In order to investigate the universality of the exponent
we finally study the ordering dynamics of the voter model on
a network built according to the prescriptions of Rgf2].

This graph is grown by iteratively adding nodes. Each of
them is connected to the nodes linkedrbyandomly chosen
edges. In this way a preferential attachment mechanism is
implemented so that this network has topological properties
practically identical to the one by Barabasi-Albert, with the
notable exception of a large clustering coefficiE2®]. This
variation has little impact on the ordering dynamics. For
>1, the phenomenology is exactly the same as the BA
graph, with the sole difference that=0.978+0.005.

In summary we find that the voter dynamics on the scale-
free networks wittm>1 shows a remarkable similarity with
the dynamics on random and complete graphs. The nontrivial
topology of the BA graph is reflected only in the scaling of
the characteristic time with the number of sites, which fol-
lows a different power law.

IV. GLAUBER T=0 DYNAMICS

A. Complete graph

On the complete graph, also Glauber dynamics can be
solved analytically in the limiN— . The master equation
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FIG. 8. Survival probability for Glaubef=0 dynamics on a
random graph withN=1000 for different values of the average
degree(k) of nodes.

FIG. 7. Fraction of active bonds in surviving runﬁ(t) (filled
symbolg and survival probability(t) (empty symbolsfor Glauber
t=0 dynamics on a complete graph.

such runs the system remains trapped forever in configura-

for the probabilityP(q,t) of having a fractiong of positive tions with part of the nodes witg=—1 and the rest witls,

spins at timet, is, in the continuum limit, fog>1/2, =1
IP(q,t) P A freezing in a disordered state for Glauber dynamics on
——=-—[(1L-q)P(q,t)], (7 a random graph had already been noticed by Sveh&éh
Jt 99 and considered analytically by Haggstrgb], who showed
where the natural definition of time tsN,/N. that, in the limitN— o, the dynamics fails to reach the glo-

The ansat2(q,t)=F(q,t)/(1-q) leads to the expression bal energy minimunfordered statefor any (k)>0. What is
. the origin of this behavior?
P(g,t) = 1 [ € } 8) This phenomenon is not related to special realizations of
’ (-9 | (1-9 the random graph topology. If we fix the topology and let the

H he f P ins. during th | luti dynamics evolve many times on it, we see that in the same
ence the form oP remains, during the temporal evolution, finie fraction of runs the system reaches a disordered state,
equal to the initial condition. If the initial condition is a

o independently from the particular realization of the topology.
&functlorlt in g=qo, then P(q,t)=4q—(a)) where (g)=1 One could think that, given the low value pf there may
~(1-goe™. _ _ be small “communities” in the graph, i.e., groups of nodes,

The fraction of active bonds is then tightly bound with each other with only few connections
- _ - —(1— -t (1 — -t with the rest of the system. Such communities could become
MV = 21 ~(@) = 2[1 (1-aoe ](1 e (9 ordered and be basically decoupled from the rest of the sys-
The comparison with numerical simulations shows perfectem, leading to a frozen disordered state essentially made by
agreement already fd¥ of the order of 50. The exponential a huge ordered set and few small chunks ordered in the op-
decay ofn,(t) is perfectly similar to what happens for the posite way. While this may be true for smék) and largeN,
voter model on a complete graph. But if we consider sepahere the explanation is different. The total magnetization
rately the fraction of active bonds in surviving runﬁ(t) and [(1/N)2;s] in the disordered state is always very close to
the survival probabilityp(t) (Fig. 7) we find a picture quite  zero and the number of domains present is always equal to 2.
different from the case of voter dynamidsgs.(3) and(4)]. Moreover the large limit of the fraction of active bonds in
The fraction of active bonds for surviving run decays expo-surviving runsni(t) indicates that a very high fraction of the
nentially and then reaches a plateau, but the height of thBonds connects sites with different values ®f(Fig. 9).
plateau depends oN and goes to zero al—«. This is  Hence we can conclude that the system remains trapped in
analogous to what occurs on regular lattices and it meansonfigurations with two highly intertwined domains of
that the Glauber dynamics is effective at ordering the Isingoughly the same size. The asymptotic valuagt) is much

model on a complete graph. higher than the lower bound computed in RéR5],
(kye /256,
B. Random graph In order to characterize further the dynamics we report in

) ] ] Fig. 10 the average degree of nodes that flip at tinfier
Let us now consider what occurs for fixétand changing  some values op andN. It turns out that the disordered state
p. The first change is exhibited by the survival probability in s not frozen It is instead a stationary active state, with some
Fig. 8. While for large(k) the decay is exponential, for gpins flipping, while keeping the energy conserved. The
smaller values ofk) a plateau appears, indicating that not all qualitative picture is then the same holding on regular lat-
realizations of the dynamics end up in an ordered state, i.etices ford>2: the system wanders forever in an isoenergy
with all nodes sharing the same value of the variahlén  set of states.
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FIG. 9. Value of the fraction of active bonds in surviving runs
na(t) as a function ot for several values oR and(k)=7. FIG. 11. Probability of ending in the disordered state as a func-

tion of N for several values ofk).

It is finally interesting to consider the probabilipy;s that C. Barabasi-Albert graph

this stationary disord'eregl state occurs, i.e.:.the limip(@f On Barabasi-Albert networks, the global behavior of
for t—oo. As shown in Fig. 11, this probability has a non- GjauberT=0 dynamics is similar to the one exhibited on
trivial behavior as a fU”Ct'O”. 0'\_| for f'Xed_ (k): for Very  random graphs: in a fraction of the runs the system reaches a
small and largeN it grows, while it has an intermediate re- disordered stationary state with two domains of opposite
gime such that it decreases as the system is made biggeRagnetization: spins continue to flip but the energy does not
Although Ref.[25] guarantees thabys goes to 1 aN di-  decrease further.
verges, for reasonable valueshthe values ofyg;s are much In Fig. 12 we report the fraction of such runs as a function
smaller than one. of the number of nodehl, for several values of the average
We have no clear understanding of the reason for the norjegree(k)=2m, wherem is the number of edges added for
monotonic behavior. It is probably related in some way to thesgch new node. In analogy with the case of the random
connectivity transition that occurs in random graphs for  graph, the probability of remaining disordered grows for
=p;=IN(N)/N [19]. For p>p, all nodes belongin the limit  |arge values ofN except for the casé&)=12, where a de-
N—) to the giant component, while fop<<p, separate craase is seen. This is similar to what happens on a random
components exist. If we invert this relation we obtain aNgraph for large average degree. R&y=2 the probability
expression for the value o whe(rg the connectivity transi- iy reaches the value 1, i.e., no run reaches full order.
tion occurs in terms ofk):Np,=€™’. Then forN<Nwy((k))  This can be easily understood given the treelike structure of
only the giant component exists, while filr>N,((k)) some  ihe Barabasi-Albert graph fon=1.
nodes belong to disconnected clusters. It is tempting to asso-
ciate N,,((k)) with the value ofN such thatpg is minimal. V. CONCLUSIONS

The data presented in Fig. 11 are compatible with this pic- |n summary, we have investigated the behavior of the
ture, though we do not have a valid explanation why thesimplest ordering dynamics for a two-valued variable on net-

decrease ofs would correspond to the case where only theworks ranging from the fully connected graph to random and

giant component exists.
0

10° O/@—n$ Oy
10 T T T T T L

" ®ON=1000 <k>=7 1 10" F 3

g2 9 BEN-1000 <k>=10| | E E
8, ¢ ON=100 <k>=7 F
17 | A—AN=100 <k>=10 2'

2 10°F .
= . 3
& 3 E
= e [

s 10°E 4
Q E
2 F
&0 L

P 10 E E
o =
~ F
§ [

4 5

L 10
\ 1 \ 1 10' 10°
4 100 200 300 300 500

t
FIG. 12. Probability that dynamics reaches a disordered state on

FIG. 10. Average degree of spins that flip at titnfor several  the Barabasi-Albert graph as a function &f for the zero-
values of(k) andN. temperature Glauber dynamics.
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scale-free graphs. In general we find that the difference bearobability of reaching this disordered stationary state tends
tween the zero-temperature Glauber-Metropolis Ising dyio increase, making full ordering less likely. Apart from de-
namics and the voter model has a quite strong impact on thgiils, this holds true for both randorErdés-Renyi and
ordering process starting from a completely random initialscale-free(Barabasi-Albet graphs.
condition. On the other hand, the presence or absence of a We are now in the position to summarize the common
typical scale in the network describing the interaction patterfeatures and the differences between the behavior of the
has a limited effect: it changé® the voter modslthe tem-  yoter model and the Glauber zero-temperature dynamics. At
poral scale over which order is reached, but does not affeghe |evel of the complete graph, despite the apparent similar-
whether or not such order is reached. ity between Eq(2) and Eq.(9), the two models are different,
. Tr;e voter model fdynarrlncs mvanqbly Ieﬁds to full orfder- since Glauber reaches genuine order in the thermodynamic
Ir?(?des?zna}[% g/gfer?w igof?ritgg)\?vr?&ﬂ\élg)?s ttheé t?#qrg?]ﬁére%e d limit, while voter does not. In the presence of a random
to reach complete consensus diverges, in a way that depenE?sD.OIOQy’ the similarity is stronger: In_both cases, the system
on the connectivity pattern. If one considers the number ofn't'a”y approaches a state with two intertwined domains .Of
roughly the same size. For the voter model, the large noise

active bondsn,(t) as a function of time averaged over all X ; )
realizations of the dynamics, including those that alread resent in _the dynamics creates fluctuatl_ons that eventually
' d, in finite systems, to complete ordering. In the Glauber

have reached the fully ordered state, one sees an exponentiaf: L i
decay. This may lead to the conclusion that the system act ase, instead, the zero-temperature condition forbids energy

ally orders exponentially fagt.e., faster than on regular lat- luctuations and the dynamics remains confined to isoener-

tices. However, this conclusion disagrees with the connec9etc partially ordered conf|gurat|ons_. .
tion between the voter dynamics and the recurrence The two dynamical models considered are not dramati-

properties of random walks. The recurrence of the randon"faIIy sensitive to the und_erlying tppology. The exist_enc_e or
walk on regular lattices fod< 2 implies that the voter model absence of a characteristic scale in the degree distribution of

orders on them, while it remains in a disordered state wheri1e network does not_ affect whether o.rde_r |s_reached or not.
the walk is transientd > 2). The same argument implies that or the voter dynamics, the degree distribution only affects

the voter model does not order on networks, as those consi he way the characteristic temporal scaléepends oM. We

: : - hown that for over three decades the exponent
ered here, for which the random walk is transigz]. The _ave S . . )
solution of this apparent paradox is that the voter model-0.8801003 fits very well the numerical data, but this does

actually does not get ordered on networks in the thermody[]Ot rule out the analytical prediction~N/logN of Ref.

namical limit. The right quantity to observe this is the den-[17]' However, the results for the scale-free graph by Dor-

sity of active bonds in surviving runsﬁ(t), which does not ogoytsev, Mendes and Samukhin seem tollndlcate that the

o . . . . . precise value ofy may depend on other details of the under-
decay to zero; it attains large values, signaling that in survivy .
) . . - - . ying network.
ing runs the system is again split in two domains with a large
number of interconnections. Notice that this is true also for
the complete graph.

For Glauber dynamics on a complete graph full ordering This research has been supported by the ECAGENTS
is attained for any system size, including the thermodynamiproject founded by the Future and Emerging Technologies
limit. Randomness in the connectivity pattern implies insteacorogram(IST-FET) of the European Community under EU
that even a finite system has a nonzero probability to remaiR&D contract IST-2003-1940, and by the project DELIS
trapped in metastable states, i.e., to indefinitely cycle througlcontract 001907 The information provided is the sole re-
configurations with the same energy. In such metastable corsponsibility of the authors and does not reflect the Commu-
figurations, the system is split in two domains with a largenity’s opinion. The Community is not responsible for any use

number of interconnections. When the system size grows thihat may be made of data appearing in this publication.
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